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An amplitude evolution equation is derived for roll waves that occur in a uniform 
open-channel flow down an incline. A periodic series of roll waves, which is a 
manifestation of the instability of high-velocity turbulent flow, is shown to be itself 
unstable to subharmonic disturbances. These disturbances develop into longer and 
higher roll waves. In this way roll waves tend to increase in size as time goes on, in 
agreement with experimental evidence. 

1. Introduction 
The turbulent flow of a sheet of water down an open inclined channel may become 

unstable when the Froude number exceeds a critical value. The instability arises 
when the kinematic-wave velocity of the friction-dominated flow becomes greater 
than the propagation velocity of shallow-water waves, which is the largest 
propagation velocity of continuous waves in a flow of this type (e.g. Whitham 1974, 
pp. 75, 85). As a consequence, the unstable uniform flow breaks down in a series of 
breaking waves or bores that are separated by sections of gradually varying flow. In  
favourable circumstances these waves are more or less periodic, and then are known 
as roll waves. These waves occur easily in certain man-made conduits, such as run- 
off channels. 

The mechanism leading to the instability was revealed by Jeffreys (1925) in an 
early study of roll waves. Photographs illustrating the periodic nature of roll waves 
have been published by Cornish (1934). Dressler (1949) used the shallow-water 
equations augmented by a term accounting for the turbulent bottom friction to 
construct nonlinear periodic solutions that consist of piecewise smooth profiles 
separated by discontinuities representing the bores. Novik (1971) proposed a ‘model 
equation’, the Burgers equation, to which a linear amplification term was added, and 
obtained continuous periodic solutions of roll wave type. Following Whitham (1974, 
p. 482), Needham & Merkin (1984) further extended the shallow-water equations by 
adding a diffusive term to the momentum equation and were also able to show that 
continuous roll-wave solutions exist when the uniform flow is unstable. 

In  all this theoretical work the analyses have been restricted to periodic roll waves. 
However, experimental evidence indicates that roll waves are quasi-periodic at best. 
Faster bores tend to overtake slower ones and subsequently combine to form longer 
and higher roll waves. Such behaviour was observed in the laboratory by, among 
others, Mayer (1961) for open-channel flow and Alavian (1986) for two-layer 
underflow down an incline. 

In  this paper I derive an amplitude evolution equation for small (but finite) 
amplitude roll waves starting from equations similar to those used by Needham & 
Merkin (1984), and thus recover Novik’s (1971) equation. It is shown, through 
numerical integration of the evolution equation, that periodic roll waves are unstable 
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to a subharmonic disturbance. While growing, such a disturbance annihilates these 
roll waves within a finite time interval through the mechanism of shock coalescence, 
and develops into roll waves of larger size. The method of deriving the evolution 
equation was also used in a stability analysis of non-uniform flow (Kranenburg 
1990). 

2. Amplitude evolution equation for weakly nonlinear waves 
2.1. Equations of motion 

The proper model description of bores is different for breaking and non-breaking 
bores. In both cases hydrodynamical energy is removed from the bore (Benjamin & 
Lighthill 1954). In  non-breaking bores the energy is radiated in the downstream 
direction in the form of waves, which are attended by a non-hydrostatic pressure 
distribution. Such waves, and the related deviations from the quasi-hydrostatic 
pressure distribution, are not present with a breaking bore. In this case 
hydrodynamical energy is dissipated by turbulence produced in the bore. To describe 
roll waves we therefore assume a quasi-hydrostatic pressure distribution. 

We further assume that the slope of the channel is constant, and that the channel 
is wide so that sidewall friction may be neglected. The shallow-water equations of 
continuity and momentum then are (e.g. Liggett 1975, §$2.2,2.5) 

ah a 
-+-(ah) = 0, 
at ax 

- a (ah) +A I u2(x,  z, t )  dz + g’h- ah w g’hS-- ‘b , 
at ax ax P 

where (see figure 1 )  x is the coordinate along the bottom of the channel, z the 
coordinate perpendicular to it ( z  is positive in the upward direction), u the velocity 
component (averaged to eliminate turbulent fluctuations) in the x-direction, a its 
depth-averaged value, h the water depth measured in the z-direction, t time, ‘b the 
bed friction, p the density of water, S = t an4  the slope of the channel, and 
g’ = g cos 4. Here 4 is the angle of inclination of the channel to the horizontal, and 
g is the acceleration due to gravity. 

The bed friction is modelled assuming quasi-steady and quasi-uniform flow. We 
use the Ch6zy formula for turbulent flow known from the hydraulics literature, 

where C, is an empirical friction coefficient depending on the Reynolds number and 
the relative roughness height of the bed. At large Reynolds numbers C, depends 
mainly on the latter parameter, and then is about 0.0024.006 for relatively smooth 
to moderately rough channel bottoms. Variations in the coefficient C, influence the 
stability boundary (Liggett 1975, Q6.2), but in a more qualitative sense do not 
essentially affect the results. For convenience we therefore assume C, to be constant. 

As a final step for arriving at a closed set of equations, the momentum transfer 
term in (2.2) must be modelled. The usual approach for gradually varying flow is to 
introduce a profile coefficient a(a > 1 )  so that I u2 dz x aa2h, 
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- 
FIGURE 1. Definition sketch. 

assuming a is constant. However, in the case under consideration the profile 
coefficient is certainly not constant. In the bores a surface roller occurs, and the 
recirculating flow results in velocity profiles that are very non-uniform. Since in the 
bores the velocity gradient a@/ax is always negative while its absolute value is large, 
we relate the momentum transfer term to this velocity gradient. A simple model is 

a@ 
u2dz x ugh-vh-,  

ax 

where a is a constant again, and v is an empirical coefficient (v > 0) with the 
dimensions of a kinematic viscosity. The comment made on variations in C, also 
applies to values of a differing from one : this coefficient influences the quantitative 
results, but the general behaviour of solutions is not changed. We therefore consider 
the case a = 1 only. 

After substitution from (2.1), (2.3) and (2.4), the momentum equation (2.2) can 
then be written as 

The solution of the equations of motion, (2.1) and (2.5), for the undisturbed 
uniform flow, in which the velocity a, and water depth h, are constant, is 

a2 - 9 ’Sh, 
O -  c, * 

A linear stability analysis of (2.1) and (2.5) yields as a necessary and sufficient 
condition for the uniform flow to be stable the well-known result 

F G 2 ,  (2.7) 

where F is the Froude number defined by P2 = a;/(g’h,). Different critical Froude 
numbers are obtained for friction laws that differ from (2.3) and for a profile 
coefficient a greater than one. Needham & Merkin (1984) and Merkin & Needham 
(1986) showed rigorously that steady, periodic solutions of (2.1) and (2.5) will exist 
if F > 2. 

Dimensionless variables are introduced according to 

h = h, h”, = (g’h,)k, x = h, 2, t = (h,/g’$’, vh = v, h, &, 
where a tilde denotes a dimensionless variable and v, is a constant, the value of which 
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is to be chosen later. Together with (2.6), equations (2.1) and (2.5) become in 
dimensionless form (the tildes are dropped) 

ah a -+- (uh) = 0, 
at ax 

au au ah u2 1 a au - + u - + - = S - c  -+-- Q -  , 
at ax ax h Bh&( ax)  

where R is a Reynolds number defined by R = (g’ho)~ho/v,. 

2.2. Asymptotic expansion 
Slowly deforming, weakly nonlinear waves superimposed on the basic uniform flow 
can be described by the scalings (e.g. Craik 1985, p. 173, where further references are 
given) 

where 
h =  1+&4(6,7) u = F + E U ( ( , ~ ) ,  

6 = E ( X - C t )  7 = E 2 t .  

(2.10) 

(2.11) 

Here 6 and 7 are transformed coordinate and time, c is the long-wave speed in the 
undisturbed flow, and E a small parameter that is to be related to the friction 
coefficient C,. On substitution the equations of motion become 

(2.12) 
a 

- [ ( F - c ) A + v ] + e  
a t  

+: (u- FA - 

a 
- [ A  + ( F - C )  v] + S  
a6 

Restricting the analysis to small flow resistance (C, -4 l ) ,  we choose the parameter e 
such that bottom friction does not enter the analysis before the second-order 
approximation. This is achieved by setting e2 = C,. Since the Froude number is of 
order one, it follows from (2.6) that the assumption of small flow resistance implies 
a small slope (8 -4 1). Proper treatment of the bores requires the convective and 
diffusive terms to be of the same order of magnitude. We therefore take R = 1, which 
determines the constant uo. 

To first order, (2.12) and (2.13) give the long-wave velocities for the undisturbed 
flow, 

c = F f l ,  

and leading terms of the Riemann invariants 

u = * A  + O(E). 

Since instabilities and roll waves travel in the downstream direction, we consider the 
case c = F + 1, U = A + O(E)  only. As a second-order approximation we put 

U = A + S  pA’+qV+rQ- +O(e2) ,  (2.14) 

where V is a function of 6 and 7 given by aV/a6 = A ,  and p ,  q and r are constants. 
Substituting from (2.14), equations (2.12) and (2.13) give 

( ” )  3.6 

p = -a, q = F ( S - F ) ,  r = -1 
2’ 
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Eliminating the first-order terms between (2.12) and (2.13) by adding these 
equations yields another second-order equation for A and U,  

(2.15) 
aA au a 
a7 a7 a t  - + - + - ( A  U +  iu") + F(2U- FA) = $ (Q 3 + O( E )  . 

To second order the amplitude evolution equation as given by (2.14) and (2.15) is 

(2.16) 

This equation is a modified Burgers equation that is known from other applications, 
including the nonlinear propagation of sound in an exponential channel (Crighton 
1979). Novik (1971) postulated (2.16) as a model equation describing roll waves, 
without, however, giving a derivation. A linearizing transformation for this equation 
is not known (Kaup 1980; Nimmo & Crighton 1982). 

Away from possible bores the diffusive term in (2.16) is negligible. Integrating the 
reduced equation along characteristic curves shows that a long-wave disturbance will 
grow, and hence the uniform flow will be unstable, if (2.7) is violated. In  the 
remaining part of this paper only the unstable flow for which F > 2 is analysed. As 
opposed to the Burgers equation, equation (2.16) allows steady, periodic solutions if 
P > 2 and Q does not depend explicitly on 6 (Novik 1971). 

The function V = A d6 occurring in (2.14) must remain bounded to evade secular 
behaviour of solutions to (2.16). Such behaviour would result in non-uniformity of 
the approximation for large times, which in itself is not illogical when dealing with 
unstable solutions. However, for the asymptotic expansion to be of some value, 
solutions should be uniformly bounded, Restricting the analysis to initial-value 
problems, the function V remains bounded provided the spatially averaged value of 
the amplitude A vanishes in any domain of length O( 1). In  particular, for spatially 
periodic solutions it must be required that, to second order, 

(2.17) 

where L is a wavelength of order one. On inspection of (2.16) it follows that if the 
integral in (2.17) is zero at 7 = 0, it will be zero for all 7 > 0. 

Rescaling of the variables according to 

F(F - 2) F(F - 2) 2 
s, 5 = lx*, 7 = t*, F(F - 2) 7, Q = 12 31 

A =  

where 1 is a lengthscale, changes (2.16) to the standard form (the asterisks are 
dropped) 

(2.18) 

3. Propagation of bores 
In  this section we consider in some detail the propagation of bores (referred to as 

shock waves hereinafter) to illustrate some properties of solutions of (2.18), and to 
make a comparison between numerical and analytical solutions. The analysis is along 
the lines indicated by Whitham (1974, pp. 30, 61). 

9-2 
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A shock condition can be derived by integrating (2.18) on a narrow domain 
containing the shock wave and neglecting higher-order contributions. This gives for 
the propagation velocity c, of the shock wave 

c, = B(r1+72), (3.1) 

where q1 and qz are the water-level elevations just ahead (x = x:) and behind (x = xi) 
the shock wave. 

The propagation of a shock wave can be calculated analytically, in an approximate 
way, by fitting (3.1) to continuous solutions of (2.18) in which S is set equal to zero 
thus reducing it to a kinematic-wave equation. The characteristic curves of the 
reduced equation are given by 

(3.3a, b)  

where f(C) = q(6,O) represents the initial condition. 

at  which a shock wave arises on the Characteristic curve starting at  x = g as 
A shock wave forms when ax/ag = 0. Equation (3.3b) then gives the instant, t = t,, 

Apparently a shock will develop only if df/dC<O. According to (3.3a), q is 
proportional to f so that a necessary condition for shock stability is qz > ql. 

Equation (3.1) implies that shock waves of different mean heights travel at 
different speeds. When several shock waves are present, one shock wave sooner or 
later overtakes another. After confluence of two shock waves they coalesce and 
continue to propagate as a single shock wave. 

To illustrate the argument outlined, and to verify the numerical method used to 
solve (2.18), we consider two examples in which coalescence of shock waves occurs. 
The first example is deliberately chosen so as to demonstrate non-uniform behaviour 
for large times. The initial condition is 

where sl, s,, a and b are constants, and 0 < b < a < 1. Shocks are initially present at 
x = fs, and x = fs,. The average value of the initial wave elevations vanishes, as 
required. We consider only the domain x 2 0 because of symmetry. 

The continuous solutions (3.3) become 

where x = x1 and x = x, are the positions of the shocks initially 

( 3 . 6 ~ )  

(3.6b) 

at x = 8, and z = s2. 
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I I I 

0 0.5 1 .o 
X 

FIGURE 2. Example of shock-wave propagation and comparison with numerical results. Only 
results for x 2 0 are shown because of symmetry; ----- , analytical results, - , numerical 
results (6, = 1.2 x lo-*, PI = 0.4, Pz = 0.5). 

Substituting from (3. 
these positions as 

The shocks combine 
confluence are 

) and (3.6), using the relation c, = &/dt and integrating give 

x1 = s l [ ( l - a + a e t ) ( l - b + + e t ) ] ~ ,  

x, = s2(1 -B+Pe”i. 

when x1 = x,( = z,). The coordinate x, and time (t = t c )  of 

The continuous solution for t > t ,  is given by (3 .6~) .  The position, x = xs, of the single 
shock remaining is given by 

1 --a+aet 
l-u++etc x, = xc( )+ (t 2 t,) .  

These solutions are shown in figure 2 for a = 0.3, b = 0.1, s1 = 0.3, s, = 0.5. As time 
goes on, the remaining shock wave continues to propagate in the positive z-direction 
while according to (3.6~) T , I + ~  as t+m. Although the mean value of r] is always zero 
(the negative x-axis is now included again), the smallest domain in which this is true 
grows without bound and consequently the approximation is non-uniform. 

The numerical calculation of shock waves requires non-zero (positive) values of the 
viscosity 8, not only for the solutions to become continuous, but also to suppress 
certain oscillations produced by the finite-difference scheme used. Details of the 
numerical method applied are presented in the Appendix. The numerical results 
shown in figure 2 are seen to agree well with the analytical solution. 
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0.5 

9 
0 

1 
X 

-0.5 

(numerical results, 8, = 0.9 x 
FIQURE 3. Example of stable position of shock wave as t+co 

8, = 0.9, /3, = 0.7). 

The initial condition and boundary conditions of the second example are such that 
the approximation is uniform. It is given by 

0 . 3 2 ~  (0 < x < 0.25) 

~ ( z , O )  = -0.125(1-~) (0.6 < z < 1) 

( 0  (0.25 < x < 0.6). 

The boundary conditions are q(0, t)  = y( 1 , t) = 0. Results of numerical calculations 
are shown in figure 3. 

These examples indicate that the shock waves becoming stationary as t+co is a 
necessary condition for the approximation to be uniform. As will be seen in the next 
section, periodic solutions always satisfy this condition provided (2.17) holds good. 
This condition is not always sufficient, however. For example, the solution of the 
initial-value problem with y(x, 0) = -xexp ( -xz/uz)  where - 00 < x < 00 and u2 4 1, 
or a similar initial form, yields a solitary shock wave that is stationary at x = 0. 
However, the height and the lengthscale of the wave system finally became 
proportional to 4 t ,  where So is the value of S when y = ay/ax = 0 (see Appendix). The 
factor ?$, implies that in this case the non-uniformity of the approximation is caused 
by viscosity. 

4. Instability of periodic solutions 
In this section we show, through numerical computations, that the initial-value 

problem for periodic solutions of (2.18) is ill-posed and analyse the generic behaviour 
of such solutions in some detail. To this end we assume spatially periodic initial 
conditions satisfying (2.17) by putting 

y(x, 0) = C a k  sin (2knx+ $k)7 (4.1) 
k 

where uk is an amplitude, $k a phase angle, and the summation is over a number of 
preselected values of the integer k (k 2 1) .  The evolution of the amplitude 7 is 
computed in the domain 0 < x < 1. 

Figure 4 shows the development of a simple sine wave disturbance with k = 4 and 
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- I I  
i lo X 

-0.5 

FIQURE 4. Evolution of a small-amplitude sine wave into a series of periodic roll waves 
(So = 4.2 x = 1.4, 8, = 0.6). 

0.5 

7 
0 

-0.5 

FIQURE 5. Coalescence of shock waves. Initial condition of figure 4 to which a subharmonic sine 
wave of smaller amplitude was added (6, = 4.2 x 8, = 1.4, /3, = 0.6). 
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0.5 

r 
0 

1 
X 

- 0.5 

. Phase shift of final roll waves caused by a higher-mode initial dist 
(8, = 4.2 x = 1.4, p2 = 0.7).  

FIQURE 6 urbance 

(a4, $J = (0.01,O) into a periodic train of shock waves separating sections with 
gradually varying flow. The solution for time going to infinity is of the type 
considered by Dressler (1949), Novik (1971) and Needham & Merkin (1984). 
However, the solution will be completely different if a subharmonic disturbance is 
present. Figure 5 shows the results for the case where a sine wave with k = 1 and 
(ul, $1) = (0.001,O) is added to the previous initial condition. Initially a train of roll 
waves appears to develop as in figure 4, but gradually the influence of the 
subharmonic wave becomes noticeable : the shock waves are displaced from their 
equilibrium position so that their propagation velocities no longer vanish, see (3.1). 
The four shock waves present move towards the centre (z = 0.5) and coalesce at that 
location, first the two central shocks and then the two peripheral ones. After that 
steady roll waves of greater wavelength and wave height remain, as if the k = 1 wave 
only had been present as an initial condition. Reducing the initial amplitude of the 
subharmonic only delays the approach to the final steady solution. 

In general, the higher wavenumber initial waves do influence the final result in 
that they generate a phase shift of the k =  1 wave. An example with 
(ul, $J = (0.001,O) and (a2, $2) = (0.005, in) is shown in figure 6. The k = 1 wave 
gradually develops into a shock wave while travelling through the disturbances 
caused by the k = 2 wave, thus experiencing a phase shift from $ = 0. 

The results indicate that if a spectrum of wave components is initially present, all 
components will influence the solution during a transient period and jointly will 
produce a phase shift of the final steady solution due to the longest (k = 1)  wave. 
Such behaviour is illustrated in figure 7 for a case where the initial amplitudes 
increase with k and the phase angles are chosen at  random (except or k = l), see 
table 1. 
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0.5 

r 
n 

-0.5 lo  1 
X 

FIGURE 7. Evolution of roll waves from a spectrum of initial disturbances 
(8, = 1.8 x = 0.9, B2 = 0.5). 

k 1 2 3 4 5 6 

a, 0.001 0.0015 0.002 0.0025 0.003 0.0035 
@k 0 6.16 4.90, 1.21 4.01 2.46 

TABLE 1. Initial conditions for results shown in figure 7 

5. Conclusion 
The calculations presented are restricted to small-amplitude waves, but never- 

theless they show some unusual effects. The initial problem for the unstable situation 
is ill-posed : small-amplitude subharmonic disturbances eventually produce a 
completely different solution. Small initial perturbations grow and thus lead to 
disorder, but in the long run all waves but the longest are annihilated. The profile of 
the surviving wave is always the same, the shorter waves only causing a phase shift. 

The theoretical results agree, at  least in a qualitative sense, with the observed 
tendency of roll waves on an incline of sufficient length to rearrange and combine to 
form longer and higher waves (Mayer 1961 ; Alavian 1986). Quantitative comparison 
with experimental results is difficult because of the sensitivity to initial (or 
boundary) conditions noted. 

Figures 5-7 appear to indicate that the process of wave growth comes to  an end 
after some time. However, this is only because an upper bound to the wavelengths 
of the initial perturbations was assumed. In  real flows such a cutoff in the spectrum 
of wavelengths will not exist so that the coalescence of bores continues to produce 
waves of increasing size. The asymptotic method used is not suitable for describing 
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this continuing wave growth. Instead, the full equations of motion (2.8) and (2.9) 
would be needed. 

Appendix. Finite-difference scheme 
Equation (2.18) is cast in conservation form, aT/at+aG/ax = 7 where G = $y2- 

Sa7/ax. These equations are approximated by finite-difference equations according to 

where Ax and At are space and time mesh sizes, and i and n denote mesh points on 
the x and time axes. The term aG/ax is approximated by central differences. The time 
integration of this term is explicit, and that of the term on the right-hand side of 
(A 1) is implicit. The truncation error is 0(Ax2 ,At ) .  

In  most cases the viscosity 6 does not affect the overall results as long as it remains 
small outside the shock waves, and therefore is chosen so as to suppress numerically 
produced oscillations. The expression adopted is 

S = [ ,+(plAxz~~+(,82Ax7)2]:.  

where So, and p2 are constants. The first term on the right-hand side of (A3) 
represents a physical viscosity, whereas the second and third terms represent 
artificial contributions needed for numerical reasons. The second term smears a 
shock out so that its thickness is of the order Ax (Roache 1976, SVD), and the third 
eliminates numerical oscillations in regions where la7/axl is small. The first term was 
found to aid the suppression of a wiggle at  the upward zero-crossings. The 
computations shown were made for Ax = At = 0.01, while the coefficients in (A 3) 
were taken to be small so as to reduce the numerical damping in each case as much 
as possible. 
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